Reconstructing Motion Capture Data for Human Crowd Study
نویسندگان
چکیده
Reconstruction is a key step of the motion capture process. The quality of motion data first results from the quality of raw data. However, it also depends on the motion reconstruction step, especially when raw data suffer markers losses or noise due, for example, to challenging conditions of capture. Labeling is a final and crucial data reconstruction step that enables practical use of motion data (e.g., analysis). The lower the data quality, the more time consuming and tedious the labeling step, because human intervention cannot be avoided: he has to manually indicate markers label each time a loss of the marker in time occurs. In the context of crowd study, we faced such situation when we performed experiments on the locomotion of groups of people. Data reconstruction poses several problems such as markers labeling, interpolation and mean position computation. While Vicon IQ software has difficulties to automatically label markers for the crowd experiment we carried out, we propose a specific method to label our data and estimate participants mean positions with incomplete data.
منابع مشابه
Crowd motion capture
In this paper a new and original technique to animate a crowd of human beings is presented. Following the success of data-driven animation models (such as motion capture) in the context of articulated figures control, we propose to derivate a similar type of approach for crowd motions. In our framework, the motion of the crowds are represented as a time series of velocity fields estimated from ...
متن کاملEvaluating Video-Based Motion Capture
Motion capture can be an effective method of creating realistic human motion for animation. Unfortunately, the quality demands for animation place challenging demands on a capture system. To date, capture solutions that meet these demands have required specialized hardware that is invasive and expensive. Computer vision could make animation data much easier to obtain. Unfortunately, current tec...
متن کاملHuman Motion Reconstruction by Direct Control of Marker Trajectories
Understanding the basis of human movement and reproducing it in robotic environments is a compelling challenge that has engaged a multidisciplinary audience. In addressing this challenge, an important initial step involves reconstructing motion from experimental motion capture data. To this end we propose a new algorithm to reconstruct human motion from motion capture data through direct contro...
متن کاملAbnormal Crowd Motion Detection with Hidden Conditional Random Fields Model
Crowd motion analysis in public places is an important research subject in the monitoring field. This paper proposes an approach for detecting abnormal crowd motion using Hidden Conditional Random Fields Model (HCRF). This approach derives variations of motion patterns from direction distribution of the crowd motion obtained by the optical flow and these variations are encoded with HCRF to allo...
متن کاملModularizing Human Motion into Actions and Behaviors
This thesis proposal addresses the problems of modularizing humanoid robot control and representing human activity. We address the problem through the creation of basis behaviors called perceptual-motor primitives. Perceptual-motor primitives serve as a substrate for linking a humanoid’s ability to perceive human activities and perform those activities. Thus, by using perceptual-motor primitive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011